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1 Introduction 
Drumlins are elongated, teardrop-shaped hills of rock, sand, and gravel, formed by a number of 

processes, including incremental accumulation of till, erosion of previously deposited sediment, 

meltwater floods, and sediment deformation (nsidc.org, 2018; Maclachlan & Eyles, 2013). The 

Peterborough Drumlin Field is amongst the biggest drumlin fields in North America and is the 

foundation for numerous surrounding communities which depend on the groundwater located 

below the various substrates (Lotimer, 2014). Population growth in the area has raised concerns 

with respect to the long-term sustainability of this precious fresh-water resource, thereby 

prompting considerable interests in determining the location, extent and potential productivity of 

subsurface aquifers in the region (Lotimer, 2014). The particular shape of drumlins makes them 

easily identifiable when looking at topographical maps as they consist of streamlined hills, several 

hundred meters wide, and sometimes more than a kilometer in length (geocaching.com, 2017).  

In order to conduct spatial analyses and environmental modeling on the Peterborough Drumlin 

Field, it is important to have accurate topographic digital data to understand how the morphology 

of the area could be contributing to environmental factors such as hydrological processes 

(Maclachlan & Eyles, 2013; Lotimer, 2014). Digital Elevation Models (DEMs) are used to predict 

cell values of unknown raster cells by interpolating them from known sampling points to generate 

3-D terrain models (ESRI, 2004; Avrun, 2013a). The accuracy of the generated terrain model 

depends on the interpolation mechanism used, which may or may not be suitable for the model 

depending on the type of analysis required and the quality/ quantity of the sampling data (Avrun, 

2013b). Interpolation methods are based on the principle of spatial autocorrelation or spatial 

dependence. If autocorrelation is present in the data, the correlation can be used to measure: 1) the 

similarity of objects within an area, 2) the degree to which a spatial phenomenon is correlated to 

itself, 3) the level of interdependence between the variables and 4) the nature and strength of the 

interdependence. Different interpolation methods will almost always produce different results 

(ESRI, 2004). There are two categories of interpolation techniques: 1) Deterministic interpolation 

(e.g. Inverse Distance Weight), which creates surfaces based on measured points or mathematical 

formulas and 2) Geostatistical interpolation (e.g. Kriging), based on statistics and are used for more 

advanced prediction surface modeling (ESRI, 2004). Because the most appropriate method will 

depend on the distribution of the sampling points and the phenomenon being studied, it is crucial 
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to understand which interpolation method will be optimal for addressing the Peterborough Drumlin 

Field DEM with the quality of data presented.  

The objectives of this assignment were to 1) Model/ create continuous elevation surfaces by 

interpolating values from sample points, 2) compare different interpolation models to each other 

and evaluate how well these conform to the ‘real’ world and, 3) compare two different extensions 

available in ArcGIS 10.5 (ESRI®) for environmental modeling purposes, the Spatial Analyst 

extension and the Geostatistical Analyst extension. This assignment will determine the most 

accurate interpolation method for the DEM for terrain mapping the Peterborough Drumlin Field.  

2 Methods  

2.1 Data acquisition 

The data used to conduct the various interpolation methods was downloaded from the National 

Topographic Database (NTDB) 031D8 data representing Peterborough, Ontario (Table 1). The 

data was clipped to the extent of the study area prior to processing. The projection used for the 

data was the Universal Transverse Mercator (UTM) and the Datum was the North American 

Datum 1983. A UTM projection is an ideal projection to use in spatial analyses because it 

maintains accurate measurements of areas and distances, minimizing distortions in latitudes 

between 80°S and 84°N, which is ideal for the Peterborough area and the narrow width of each 

zone ensures minimal distortions (University of Toronto, 2018; Geokov, 2018). Furthermore, 

UTM projection is favorable for interpolation as it uses meters and therefore there is a known 

distance between each sample point. The interpolations were based on the elevation fields of both 

the clip_031D08_contours_L shapefile (553 records) and the elev_pt shapefile (486 records). The 

contour lines shapefile contained 10-meter intervals.   
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Table 1 List of feature classes used for the testing of the various interpolation methods and their corresponding properties. 

Feature class  Classification Source Coordinate System: Projection, 

Datum, Zone, extent 
Feat type (pt, 

line, poly, 

raster, etc.) 

Fields Max/ 

Min 

Value 

elevation 

# of 

records 
Description/comments 

clip_031D08_contours_L.shp Clipped 

Contours 

NTDB  

031D8 

Projection: Transverse Mercator. 

Datum: NAD 83  
Zone: 17N 

Extent: Top (4919411.890610 m) 

Bottom (4902685 m) 

Right (717294.091445 m) 

Left (699160 m) 

  

Polyline Shape, EntityName, NTS, 

Version, Theme, ID, 
Code_Gener, ATC, ATG, 

ATZ, ATE, Accuracy, Type, 

Generation, Elevation 

Max:330 

Min: 190 

553 This has been clipped 

from 
031D08_contours_L.shp. 

Contour intervals were 

specified at 20 m. 

Clip_031D08_elev_pt_p.shp Clipped Spot 

heights 

NTDB  

031D8 

Projection: Transverse Mercator. 

Datum: NAD 83  
Zone: 17N 

Extent: Top (4919336.000000 m)  

Bottom (4902863.000000 m) 
Right (717197.000000 m) 

Left (699333.000000 m) 

point Shape, EntityName, NTS, 

Edition, Version, Theme, ID, 
Code_Gener, ATC, ATG, 

ATZ, ATE, Accuracy, Type, 

Elevation, Angle 

Max: 188 

Min:333 

486 This has been clipped 

from 
031D08_elev_pt_p.shp 

 

clip_031D08_water_b_a.shp Clipped Water 

(Lakes) 

NTDB  

031D8 

Projection: Transverse Mercator. 

Datum: NAD 83  

Zone: 17N 
Extent: Top (4919330.462095 m) 

Bottom (4902824.000000 m) 

Right (717183.697379 m) 
Left (699090.426099 m) 

polygon Shape, EntityName, NTS, 

Edition, Version, Theme, ID, 

Code_Gener, ATC, ATG, 
ATZ, ATE, Accuracy, Type, 

Elevation, Centroid_X, 

Centroid_Y. 

Max: -

9999 

Min: -
9999 

107 This has been clipped 

from 

031D08_water_b_a.shp 
 

clip_031D08_water_b_L.shp Clipped Water 
(Streams) 

NTDB  
031D8 

Projection: Transverse Mercator. 
Datum: NAD 83  

Zone: 17N 

Extent: Top (4919406.653594 m) 
Bottom (4902687.000000 m) 

Right 717289.638155 m) 

Left (699180.000000 m) 

Polyline Shape, EntityName, NTS, 
Edition, Version, Theme, ID, 

CODE_Gener, ATC, ATG, 

ATZ, ATE, Accuracy, Type, 
Elevation 

Max: 183 
Min: 307 

376 This has been clipped 
from 

031D08_water_b_L.shp 

 

clip_031D08_road_L.shp Clipped road  NTDB  

031D8 

Projection: Transverse Mercator. 

Datum: NAD 83  
Zone: 17N 

Extent: Top (4919400.112413 m) 

Bottom (4902705.000000 m) 
Right (717292.000000 m) 

Left (699171.000000 m) 

Polyline Shape, EntityName, NTS, 

Edition, Version, Theme, ID, 
Code_Gener, ATC, ATG, 

ATE, Accuracy, Classifica, 

Support, surface, status, 
NB_Lanes, FIR_ROADINO, 

Sec_Roadino, THI_Roadino, 

elevation  

Max: -

9999 
Min: -

9999 

3016 This has been clipped 

from 031D08_road_L.shp 
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2.2 Data observation and pre-processing  
Figure 1 (a-d) Figure demonstrating the differences between contour lines and spot heights in the city of 

Peterborough. 

Name of Figure Figure Observations 

Figure 1.a  Contour 

lines shapefile 

displaying the highest 

elevations (>300 m) 

within the city of 

Peterborough. 

 

The contours display 

the area of highest 

elevation in the 

southwest corner of 

the city with a 

maximum elevation of 

330 m.  

Figure 1.b Contour 

lines shapefile 

displaying the lowest 

elevations (<200 m) 

within the city of 

Peterborough.  

 

The contours display 

that the area of lowest 

elevation is in the 

southeast corner of the 

city with a minimum 

elevation of 190 m.  

Figure 1.c Spot 

heights shapefile 

displaying the highest 

elevations (>300 m) 

within the city of 

Peterborough. 

 

The spot heights 

display that the areas 

of highest elevation 

are on the west side of 

town. The area of 

highest elevation is 

333 m.  

 

 

 

 

 

 

 

 

N 

N 

N 
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Figure 1.d Spot 

heights shapefile 

displaying the highest 

elevations (<200 m) 

within the city of 

Peterborough. 

 

 

 

The spot heights 

display that the areas 

of lowest elevation are 

on the east side of 

town. The lowest 

elevation is 188 m.  

 

The pre-processing data observation indicates that contour lines describe the surrounding 

landscape much better than spot heights (Figure 1). With the contour lines, we can visually see in 

which direction the terrain is slopping as they connect points of equal elevation and thereby do a 

better representation of the topography (Chang, 2016). Spot heights, however, are not recorded in 

intervals and therefore give a better value if we are interested in precise measurements. Contour 

lines were converted to points using the Feature Vertices to Point tool. This tool creates a feature 

class containing points generated from the specified vertices or locations of the input feature. This 

tool was more suitable for the interpolations comparatively to Feature to Point, which represents 

the midpoints of the input feature classes (ESRI, 2010). The input feature class for every 

interpolation method was the raw data transformed using the Feature Vertices to Point tool (. i.e. 

ContPoint), with the exception of TopoToRaster, which can interpolate directly from contour lines 

and Spline, which required simplification prior to running the model (ESRI, 2018). Additional 

details on data preparation, selected parameters and the reasoning behind their selection are also 

discussed in Table 2. 

 

 

 

 

N 
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2.3 Interpolating using the Spatial Analyst extension  
Table 2 Table containing the various interpolation methods used with the Spatial Analyst extension and their 

selected parameters. 

Method Input/ Data Preparation Parameters  Comments 

Inverse Distance 

Weighting 

(IDW) 

Contour lines converted to 

points using the ‘Feature 

Vertices to Point’ tool. 

Input Point Features: ContPoint 

Z value field:  ELEVATION 

Output raster: ContPoint_IDW 
Output cell size: 20 

Power: 3 

Search radius:  Variable 
Number of points: 12 

Maximum distance: N/A 

Input barrier polyline features: Rivers 

Default parameters were 

left mostly as-is, with the 

exception of power which 

was changed to 3 to 

improve the accuracy of 

the surface. 

*Method description: The weight assigned to an un-sampled cell is a function of the distance of an input point 

from the unsampled cell location. The greater the distance, the less influence the cell has on the unsampled cell 

value (ESRI, 2004). 

Spline (Tension) Contour lines simplified 

using the ‘Simplify Line’ 

tool using a 50m 

simplification tolerance 

and then converted to 

points using the ‘Feature 

Vertices to Point’ tool. 

Input Point Features: 

ContPoint_Simplofy 
Z value field:  ELEVATION 

Output raster: ContPoint_Spline_Tension 

Output cell size: 20 
Spline type: TENSION 

Weight: 0.1 

Number of points: 12 

Tension was used in order 

to more accurately 

generate a surface that is 

faithful to the original data. 

Other parameters were left 

as default. 

Spline 

(Regularized) 

Contour lines simplified 

using the ‘Simplify Line’ 

tool using a 50m 

simplification tolerance 

and then converted to 

points using the ‘Feature 

Vertices to Point’ tool. 

Input Point Features: 

ContPoint_Simplofy 
Z value field:  ELEVATION 

Output raster: 

ContPoint_Spline_Regularized 
Output cell size: 20 

Spline type: REGULARIZED 

Weight: 0.1 
Number of points: 12 

Regularized was used to 

see what sort of output it 

would generate. 

*Method description: This approach uses a mathematical function to minimize the surface curvature. It is the best 

method for representing the smoothly varying surfaces of phenomena such as temperature (ESRI, 2004). 

TopoToRaster Raw contour lines Input feature data:  

 Contour Lines // 

ELEVATION// Contour 

 Spot Heights // ELEVATION // 

PointElevation 

 Lakes // N/A // Lake 

 Rivers // N/A // Stream 

Output surface raster: ContLine_T2R 
Output cell size: 20 

Output Extent: Same as layer study area 

Margin in cells: 20 
Smallest z value: N/A 

Largest z value: N/A 

Drainage enforcement: ENFORCE 
Primary type of input data: CONTOUR 

Maximum number of iterations: 20 

Roughness penalty: N/A 

Profile curvature roughness penalty: 

N/A 

Discretization error factor: 1 
Vertical standard d error: 0 

Tolerance 1: 2.5 

Tolerance 2: 100 

Optional outputs:  

Barrier layers were added 

in order to boost the 

accuracy of the generated 

surface. Other parameters 

were left with their default 

settings. 
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*Method description: The TopoToRaster method imposes constraints that ensure a hydrologically correct DEM 

that contains a connected drainage structure and correctly represents ridges and streams from input contour data. 

This method was specifically designed to work efficiently with contour inputs (ESRI, 2004). 

Kriging Contour lines converted to 

points using the ‘Feature 

Vertices to Point’ tool. 

Input Point Features: ContPoint 

Z value field:  ELEVATION 

Output raster: ContPoint_Kriging 
Kriging method: Ordinary 

Semivariogram model: Spherical 

Output cell size: 20 
Search radius:  Variable 

Number of points: 12 

Output variance: N/A 

 

 

Parameters were left with 

their default settings in 

order to generate favorable 

results. 

*Method description: Kriging assumes that the distance or direction between sample points reflects a spatial 

correlation that can be used to explain variation in a surface. This method is most appropriate when a spatially 

correlated distance or directional bias in the data is known and is often used for applications in soil science and 

geology (ESRI, 2004). There are various types of kriging, again varying along data type. 

Natural 

Neighbour 

Contour lines converted to 

points using the ‘Feature 

Vertices to Point’ tool 

Input Point Features: ContPoint 
Z value field:  ELEVATION 

Output raster: ContPoint_Natural 

Neighbor 
Output cell size: 20 

No optional parameters 

other than cell size 

available to experiment 

with. 

 

 

 

2.4 Geostatistical Analyst extension and Exploratory Spatial Data Analysis (ESDA). 
Table 3 Table demonstrating the various ESDA methods used to test and explore the data prior to the selection of an 

ideal interpolation method for the Geostatistical Analyst extension.  

Validation method Description  

Normality 

Representation: 

Histogram & 

QQ-Plot 

Histograms and QQ plots were used to verify the normality of the data. Data was 

considered normally distributed if the mean and median were similar, skewness was 

near zero, and the kurtosis was near the value of 3 (ESRI, 2017). 

Global trend 

Representation: 

Trend analysis graph 

A trend analysis graph was used to determine if a directional trend occurred in the 

data. Directional trends (. e.g. North-South, East-West…) can skew the results of 

geostatistical interpolations (Chang, 2016). 

Stationarity 

Representation: 

Voronoi map 

A Voronoi map was used to test stationary data, meaning that the relationship between 

two points and their values depends on the distance between them, not their location. 

Two methods were attempted on the contour points data, (1) simple, which assigns the 

cell value recorded within each individual cell, and (2) entropy, which places cells in 5 

classes based on the natural grouping of data values  (ESRI, 2017). 

Spatial Autocorrelation 

Representation: 

Semi-Variogram cloud 

A Semi-variogram cloud was used to determine if the data was spatially auto-

correlated, meaning that locations closer in distance are assumed to be closer in value 

than locations further apart (ESRI, 2017). The angle of the semi-variogram was 

adjusted to determine the directions of maximum and minimum sill and range values to 

determine in which direction the data ceases to correlate spatially. Subsets (3.5 %) of 

the contour point data was used for this analysis due to difficulties analyzing the 

results with all the sampling points. 

 

Prior to conducting interpolation with the geostatistical analyst extension, the Exploratory Spatial 

Data Analysis (ESDA) tool was used (Table 3). This tool allows for more informed decisions on 
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how the interpolation model should be constructed (ESRI, 2017). In order to understand the type 

of interpolation model suitable for our data, a number of validation methods were conducted. 

Difficulties with interpretation were experienced when verifying spatial autocorrelation with the 

semi-variogram cloud.  Geostatistical Analyst is optimized for small sampled datasets (. i.e. <500 

points), and therefore a subset of data was used for the spatial autocorrelation analysis (GEOM105, 

2018).      

2.5 Geostatistical Analyst extension and Interpolation models (Post-ESDA) 
Table 4 Table displaying the interpolation methods applied, including geostatistical kriging interpolation and a 

deterministic non-kriging method.  

Interpolation 

Method 

Min/ Max 

elevation 

Layers & Parameters Description 

Simple Kriging 196-304m Layers: Spot Heights 
Parameters: Default 

Simple kriging assumes 

that the mean of the data 

set is known and was, 

therefore, a better 

solution with spot 

heights as these are exact 

values (Chang, 2016). 

Universal 

Kriging (1) 

189-324m Layers: Spot heights 
Type: Universal 

Transformation type: none 

Order of trend removal:   constant (default) 

Semi-variogram modeling:  

k-bessel 

anisotropic: On 

Searching Neighborhood:  

1 max neighbor 

4 sectors 
 

This method assumes a 

spatial correlation 

between sampling points 

and a directional trend in 

the data (Chang, 2016). 

Universal 

Kriging (2) 

188-333m Layers: Contour Points 

Type: Universal 
Transformation type: none 

Order of trend removal:   constant (default) 

Semi-variogram modeling:  

k-bessel 

anisotropic: On 

Searching Neighborhood: 1 

Max neighbor: 1 

4 sectors 

 

Empirical 

Bayesian 

kriging  

190-330m Layers: Contour points 

Subset size: 100 

Overlap Factor: 1 
Number of Simulations: 100 

Output surface type: Prediction 

Transformation: none 
Semi-variogram type: Power 

Neighbourhood type: standard circular  

Maximum neighborhoods: 8 
Minimum neighbors: 1 

Sector type: 8 

Angle: 0 
Radius: 106.5918 

Predicted X: 708227 

Predicted Y: 4911048 
Value: 250 

 

The third method was 

Empirical Bayesian 

kriging (EBK). EBK 

automatically calculates 

these parameters through 

a process of sub-setting 

and simulations (ESRI, 

2018). 
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Inverse 

Distance 

Weighting 

(IDW) 

190-330m Layer: Contour points 

Power: 100 

Neighborhood: Standard 

Min/Max neighbors: 1  
Sector: 1 

Angle: 0 

Major/ minor semi-axis: 6167.628 
Anisotropy factor: 1 

See table 2 for additional 

details on this 

interpolation method. 

 

Multiple geostatistical interpolation methods were applied and compared to identify which of the 

models were better suited for creating a DEM with the available data. The parameters (. i.e. 

direction, shape, anisotropy…) for each model were modified until the best outcome was produced 

by visualizing the “fit” associated with the semi-variogram (Table 3). Cross-validation was used 

to compare the outcomes of each interpolation method by comparing the Root Mean Square 

(RMS)-standardized value nearest to one, mean standardized value nearest to 0, the lowest average 

standard error and the smallest difference when subtracting the RMS value from the average 

standard error.  

2.6 Quality Assurance and Quality Control (QA/QC) 

QA/QC was used to check for the accuracy of the data and to explore how well the models compare 

to each other and predict values at unknown locations (. i.e. observed vs predicted). The first 

method utilized was to zoom in on a number specific X, Y coordinate locations and identify the 

differences in elevation in relation to the various kriging models used (see table 4 for additional 

details). The second method used the raster calculator tool to compare the best output surfaces 

against some of the least-representative interpolation results. The outputs produced by the raster 

calculator were the areas of greatest variations amongst both interpolation methods, which was 

represented by the standard deviation. This enabled us to quickly locate areas where the elevation 

was exaggerated or underestimated.   
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3 Results 

3.1 Interpolating using the Spatial Analyst extension  
Figure 2 (a-f) Figures demonstrating the results from using the “ Feature Vertices to Point” tool on the contour 

lines (with the exception of topo To raster) and the corresponding interpolated DEM models. Figure 2.a is an 

overview of the area and the inset map displays the precise study location. 

Figure 2.a Grid 031D8 total overview with insight map to demonstrate the study areas of figure 2.(b-g) 

 

Legend (m) 

 

 

Figure 2.b Inverse Distance Weighting  Result 

 

IDW produced a surface that, while not perfect, was 

quite accurate. Some of the smaller areas of 

heightened/lowered terrain were lost, and others 

were enlarged slightly, but overall the results were 

largely faithful to the source data. 

Figure 2.c Spline (Tension) Result 

 

Spline required the most amount of data preparation 

(. e.g. Simplifying contour lines, converting them to 

points, and then running the process) for mediocre 

results. Elevation was replicated decently, but some 

areas were visually off. In particular, the tension 

spline produced low points in the northern lakebed 

that were ~40m deeper than they are in reality. 
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Figure 2.d Spline (Regularized) Result 
 Using a regularized spline produced the worst 

results by far. Areas were shown as being up to 

300m lower than they are in reality, appearing as 

low as -150m. 

Figure 2.e TopoToRaster (T2R) Result 

 

The simplest tool and also the best. By running the 

T2R with contour lines, and using rivers and lakes 

as boundaries, we were able to get a surface that 

was highly accurate to the original data. 

Figure 2.f Kriging (ordinary) Result 

 

Kriging provided poor results. Loss of accuracy was 

present across the surface, with non-existent high- 

and low-points being created, and existing 

variations in elevation being misrepresented. 

Figure 2.g Natural Neighbor Result 

 

Nearest neighbor provided results that did a terrific 

job of maintaining the shape of elevation features, 

although the size of some shapes was exaggerated or 

understated. 
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3.2 Geostatistical Analyst extension and Exploratory Spatial Data Analysis (ESDA). 
Figure 3 (a-d). Histograms (a-b) and QQ-Plots (c-d) used to verify the normality of the contour points (a-c) and the 

spot heights (b-d) to determine potential and optimal interpolation models.  

Figure 3.a Histogram of the contour points.  Figure 3.b Histogram of the spot heights.  

 
 

 

Figure 3.c QQ-plot of the contour points. Figure 3.d QQ-plot of the spot-heights. 

  
 

Although both spot heights and contour points appear to be moderately skewed towards areas of 

higher elevation (. i.e. > 260 m), both feature classes seem to be displaying normally distributed 

data.  This can further be confirmed when looking at the statistics displayed in figure 1 (a, b). The 

mean (255.48 m) and median (260 m) of the contour points (Figure 1.a.) were fairly similar, the 

skewness was near 0 (Skewness = -0.625) and the kurtosis-value was approximately 3 (Kurtosis = 

3.0352). A similar statement can be said for the spot height data (Figure 1.b.) (mean = 259.95 m; 

median = 264 m; Skewness = -0.572; Kurtosis = 2.7181). Comparable results were produced with 

subsets of the data (. i.e. 50%), however, they will not be presented in this report. The 10-meter 

intervals associated with the contour points (Figure 3.c.) created linear QQ-plot, comparatively to 

the spot heights which used precise values (Figure 3.d.).   
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Figure 4 (a-b)  Trend analysis graph to determine the presence of any directional trend using contour points (a) 

and spot heights (b). 

Figure 4.a Trend analysis graph of the contour points. Figure 4.b Trend analysis graph of the spot heights.  

  

 

Both contour points (Figure 4.a.) and spot heights (Figure 4.b.) displayed directional trends. On 

the X-axis (West-East), a gradual decline in elevation towards the eastern portion of the 031D8 

OBM grid was evident (or incline towards the western portion of the grid), and on the Y-axis 

(North-South), a gradual increase in elevation towards the northern section of the grid was evident 

(or decrease towards the southern portion of the grid). Once again, the contour points (Figure 4.b.) 

displayed more linear results. 

Figure 5 (a-b)  Voronoi map displaying the stationarity of the data for contour points. Two methods were attempted, 

simple (a) and entropy (b).  

Figure 5.a. Voronoi map using the simple method. Figure 5.b. Voronoi map using the entropy method. 

  

  

 

The Voronoi map with the simple method (Figure 5.a.) did a fairly good representation of the 

031D8 grid as we can clearly identify where the drumlin is located (darkest portion of the map). 

However, this demonstrates that values are dependant on their exact location and not necessarily 
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the distance between them. This could potentially be considered a violation of stationarity. The 

entropy method (Figure 5.b) did not produce representative results and were difficult to interpret.  

 

Figure 6 (a-c) A semi-variogram cloud used to determine spatial autocorrelation. The angle of the semi-variogram 

was adjusted to determine the directions of minimum (a) and maximum (b) sill and range values. Clouds were 

created with a subset (. i.e. 3.5 %) of the contour points. This figure also displays areas with the greatest outliers 

(c).   

Figure 6.a.  Semi-variogram with the lowest sill (~4.9 γ -10-3) and range (~0.71 h -10-4) in a southwest-northeast 

(35°) direction using a subset of contour point data.  

 
 

Figure 6.b. Semi-variogram with the highest sill (~8.1 9 γ -10-3) and range (~1.171 h -10-4) in a northwest-southeast 

(284.5°) direction using a subset of contour point data.  
 

 

Figure 6.c. Figure displaying where the outliers are located in the data, affecting the spatial autocorrelation.  

 

 

 

The semi-variogram displayed a direction trend in the data, which was previously confirmed with 

the trend analysis (Figure 4). Figure 6.a demonstrated spatial autocorrelation in the data until the 

range levels-out (~0.71 h -10-4) and represented the lowest sill (~4.9 γ -10-3) in a southeast to 

northwest direction (35°). Figure 6.b also appeared to display a directional trend, however, the 
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direction appeared to be in a northeast-southwest direction, where the highest sill was observed 

(~8.1 9 γ -10-3). This observation is further confirmed by Figure 6.c, which displays the majority 

of outliers being in the southwest (284.5°) portion of the grid.  

3.3 Geostatistical Analyst extension and Interpolation models (Post-ESDA) 
Figure 7 (a-e) Results from geostatistical analyses (a-c) and deterministic model (d).  

Figure 7.a Simple kriging with data from spot heights. 

  RMS-Standardized: 0.882383 

Mean Standardized:                  

-0.01263158 

Avg Standard error: 18.36772 

RMS: 15.20299 

Difference between Root-

Mean-Square and Average 

Standard Error: -3.16473 

 

Lag Size: 1280.735 

Number of lags: 12 

Figure 7.b Universal Kriging with data from spot heights. 

  

RMS-Standardized: 
0.8942589 

Mean Standardized: 

0.009754824 

Avg Standard error: 15.25399 

RMS: 13.63839 

Difference between Root-

Mean-Square and Average 

Standard Error: -1.6156 

 
 

Lag Size: 2024.987 

Number of lags: 12 



16 

GEOM 105                       Douglas Piper & Tristan Gingras-Hill                       Assignment 1(a)       

Figure 7.c Universal Kriging with data from contour points. 

  

RMS-Standardized: 

0.8965142 

Mean Standardized: 

0.01371116 

Avg Standard error: 1.455773 

RMS: 1.328321 

Difference between Root-

Mean-Square and Average 

Standard Error: -0.127452 

Figure 7.d Empirical Bayesian Kriging with data from contour points.  

  

RMS-Standardized: Na 

Mean Standardized: Na 

Avg Standard error: 1.623188 

RMS: 1.179419 

Difference between Root-

Mean-Square and Average 

Standard Error: -0.443769 

Figure 7.e Inverse Distance Weighting (deterministic) with data from contour points. 

 

 

Mean:  0.1092936 

RMS: 2.35165 

 

When visualizing the RMS standardized values, universal kriging with the contour points (Figure 

7.c) appears to have the closest value to 1 (RMS standardized = 0.8965142). Universal Kriging 

with spot heights (Figure 7.b) had the best standardized mean value (standardized mean value = 

0.009754824) with a value nearest to 0. The lowest average standard error (1.455773) was 

attributed to Universal Kriging with contour points data (Figure 7.c.), however, the lowest RMS 

value (1.179419) was attributed to the Empirical Bayesian Kriging (Figure 7.d.). Finally, the 

smallest difference between RMS and average standard error (-0.127452) was detected with 

Universal Kriging using the contour points (Figure 7.c.). The results indicate that universal kriging 

is likely the best available model to be used with the current data and simple kriging (Figure 7.a.) 

was the worst fit, hosting the least favorable values for nearly each cross-validation statistic. 

Although difficult to compare due to unproduced cross-validation statistics (.i.e. RMS-
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standardized, Mean-standardized), Empirical Bayesian Kriging produced a favorable output 

(Figure 7.d.) when interpolating contour points. Although it is difficult to compare IDW with the 

geostatistical methods used, visually it appears to be rather similar to Empirical Bayesian Kriging. 

3.4 Quality Assurance and Quality Control (QA/QC) 
Table 5 First QA/QC method used to compare each kriging method to one another and compare interpolation 

methods using spot height and contour points.  

Spot  Z- Universal 

(contour points) 

Z - Universal (spot 

heights) 

Z - Empirical 

(contour points) 

Z - Simple (spot 

heights) 

A 

310.28m 287.72m 310m 278.56m 

X: -78.437764 

Y: 44.361716 

Looking at the peak of a drumlin, universal and empirical kriging both produce similarly high-quality 

results when it comes to shape and height. Universal kriging done with spot heights loses the shape of 

the drumlin and is less accurate when it comes to height. The default simple kriging shows poor 

interpolation of shape and height. 

B 

 
200m 

 
205.37m 

 
200m 

 
205.22m 

X: -78.301792   

Y: 44.269765 

 

Examining the low areas south of Peterborough gives more consistent results with the various methods 

tested. With no significant variation in contours, there wasn’t much height to be lost in the interpolation 

process. The two methods run using spot heights (the second universal kriging and the default simple) 

have a slight edge up here in terms of accuracy though, given that the contour point-interpolated rasters 

are based on data with even, 10m intervals. 

C 

280m 280.63m 291.14m 284.60m 

X: -78.486729 

Y: 44.259996 
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As with the previous drumlin, the methods that used contour points produced favorable results. 

Interestingly though, while the shapes are lost upon interpolation with the other methods, the disparity 

between the heights given from all the methods is much less noticeable here, with only 11m of 

difference between the best and worst results. 

D 

 
250m 

 
266.76m 

 
250m 

 
278.26m 

X: -78.486729 

Y: 44.377403 

The lake in the northwestern corner of the map produced diverse results across the methods. While both 

universal (contour points) and empirical recorded the exact same heights, their shapes differ slightly, 

with universal having some strange linear contour shapes created during the interpolation process. 

Universal (spot heights) was less accurate in terms of shape and elevations, and the default kriging 

raster was inaccurate in both regards. 

E 

 
250m 

 
266.18m 

 
250m 

 
271.37m 

X: -78.462526 

Y: 44.356582 

Lastly, the river valley in the northwestern corner of the map produced some interesting results that 

showcased the accuracy of universal kriging.  
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Table 6 Second of the QA/QC methods used to compare the better of the interpolation methods to the worst interpolation methods.  

Comparison Image Differences Values 

Universal (contour 

points) vs. 

Empirical 

Bayesian (contour 

points) 

 

In comparing our two best results (a 

universal kriging grid vs. an empirical 

Bayesian grid), noticeable differences 

occur near the south-western side of 

Peterborough, in both positive and 

negative deviations. Overall the map is 

largely consistent, with the majority of 

surfaces being within 1m of each other 

when comparing the two methods. Other 

areas of deviation occurred along the 

drumlins, and along the edges of the 

surface beyond the contour lines and spot 

heights used to generate the raster. 

Most of the surface generated 

from the raster calculator came 

out with fairly even results, with 

the majority of cells coming back 

between -0.5 and +0.5. The areas 

of the most extreme deviation 

occurred near Peterborough, with 

deviations as low as -12 and as 

high as 16 

Universal (contour 

points) vs. Simple 

(spot heights) 

 

Comparing the best surface with our 

worst (a modified universal kriging grid 

vs. a simple kriging grid with default 

parameters) showed just how much of a 

difference using the right interpolation 

method can make. Large swaths of land 

in the lake beds exhibited significant 

deviation, as did most of the highest and 

lowest parts of the map. 

Significant deviation was present 

in the resulting calculated raster, 

with values ranging from -42 to 

21. The highest deviations 

occurred in the valleys in the 

south-western corner of the map, 

and along the tops of the drumlins 

throughout the raster. The 

majority of the map was between -

19 and 1.4. 
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Universal (contour 

points) vs. 

Universal (spot 

heights) 

 

The contrast between using universal 

kriging with spot heights vs. contour 

points, while not quite as strong as it was 

with universal vs. simple, is still quite 

apparent. The results generated by using 

spot heights rather than contour points 

has led to strong deviations, located 

primarily in the lakebed in the north-east 

and with occasional deviations along the 

tops of the drumlins. 

Deviation ranged from -56 to 17, 

and was strongest along the 

valleys and tops of the drumlins. 

The rest of the map sat 

somewhere between 0.6 and -16. 

Topo to Raster vs. 

Universal (contour 

points) 

 

In comparing the best results from the 

Spatial Analyst and Geostatistical Analyst 

toolkits, the difference that having 

properly defined contour lines can make 

becomes quite apparent. With Topo to 

Raster allowing the degree of precision 

that it does (and the ability to use lakes 

and rivers as barriers), the contrast 

between the two methods becomes 

readily apparent in the fine details of the 

surface: namely, the lows around the 

rivers and the ridges atop the drumlins. 

Deviation ranged from -46 to 10, 

with the most significant lows 

occurring in along the rivers in the 

northern half of the surface. 
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4 Discussion 

4.1 Interpolating using the Spatial Analyst extension  

Out of all the DEM models interpolated with the spatial analyst extension, TopoToRaster produced 

the greatest output (Figure 2.e). TopoToRaster imposes constraints that ensure a hydrological 

connectivity within the output by correctly representing ridges and streams from input contour 

data, and therefore benefiting from multiple inputs to ensure precise data (ESRI, 2004). The spline 

tool was the worst of the interpolation methods and required the most preparation (Figure 2.c-d). 

This is likely because spline uses mathematical functions that minimize overall surface curvature 

(ESRI, 2004). For this reason, the DEM’s produced by both spline methods produced extremely 

inaccurate results, with certain areas interpolated into negative values. Spline interpolations are 

best suited for surfaces that vary smoothly, such as water table heights (ESRI, 2009).  

4.2 Geostatistical Analyst extension and Exploratory Spatial Data Analysis (ESDA). 

The exploratory spatial data analysis (ESDA) tool provided by the geostatistical analyst extension 

allows for greater data observation and exploration than that of the spatial analyst extension. This 

tool allowed for a proper analysis prior to conducting any kriging interpolations to know if we 

should apply deterministic models or geostatistic models. The first assumption to check for a 

geostatistic model was looking at normality. Although our histogram appeared slightly skewed, 

the skewness, kurtosis value, the similarity between mean and median and, the QQ-plot, confirmed 

that our data was normally distributed. The second assumption is that all the values are spatially 

auto-correlated, meaning that sampling points in proximity of one another should have a greater 

similarity than points which are further apart (University of Omaha, 2018). This rule was likely 

violated, as sampling points located at the top of the Peterborough drumlin field caused for outliers 

with areas located at the lower elevations (. i.e. the city of Peterborough). A similar study 

conducted by Maclachlan & Eyles (2013), also found minimal spatial randomness within the 

Peterborough drumlin field and found directional trends with similar values as we did. However, 

geographical data is generally affected by its location (GEOM105, 2018). Knowing that directional 

trends were present in the data allowed for a better understanding of which kriging method would 

be better suited for the DEM model.  

4.3 Geostatistical Analyst extension and Interpolation models (Post-ESDA) 

Universal kriging appeared to be the better of the interpolation methods used in the geostatistical 

analyst extensions. This is because universal kriging accounts for a directional trend in the data 
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and therefore uses a different mathematical approach to compensate (ESRI, 2004; GEOM105, 

2018). Simple kriging was the worst of the DEM models utilized and this is likely because it does 

not assume any trends in the data (GEOM105, 2018). Although certain assumptions were violated 

prior to using geostatistical interpolation models, the deterministic model used (. i.e. IDW) did not 

represent the data adequately. Again, this value does not account for any directional trend and 

predicts values within proximity to be more similar (ESRI, 2004). Surprisingly, however, IDW 

appeared visually as being a better fit for the model than Simple Kriging. This might suggest that 

when geostatistical assumptions are violated, which is often the case with geographical data, 

deterministic models might be a more suitable fit.   

4.4 Quality Assurance and Quality Control (QA/QC) 

QA/QC is definitely a good method for comparing results next to one another to gain further 

insight. One of our primary observations was that conducting interpolation with spot heights is not 

as beneficial as contour points as spot heights lose a lot of essential details (Figure 8). Another 

interesting finding from this project was that comparing interpolation methods at low elevation 

(Figure 8.b) does not allow for efficient visual representation. Comparisons should be conducted 

at the highest elevations (Figure 8.a) or areas of rapid change (. e.g. sharp slope) to gain a better 

perspective on the differences between interpolation methods.  

The second QA/QC method (Figure 9) is also a great method for comparing interpolation methods 

as it allows for a global view of the entire study area, however, it has the disadvantage of only 

displaying 2 models at a time. This method was particularly useful when displaying drastic 

differences in the data, such as Figure 9.b and determining what are the exact causes of issues with 

the interpolation model.  

5 Conclusion 
Overall, the objectives of this assignment were all met. We modeled continuous elevation surfaces 

from two sets of sampling points (. i.e. spot heights and contour points) and concluded that contour 

points are the better option if contour lines are available, as they display greater precision. We 

found that TopoToRaster was the better and simpler of all interpolation methods when conducting 

elevation models, being able to not only directly input contour lines, but also hydrological data for 

the greatest precision. And finally, we determined that the spatial analyst extension, although 

simple and easy to use for pre-processing and interpolation models, does not have the flexibility 
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of the geostatistical analyst extension which allows much more in terms of pre-processing the data 

and modifying parameters when interpolating the data. That being said, the increase in options 

with the geostatistical analyst tool implies that the user should be more comfortable with the 

statistics used in interpolation and the effects of modifying the parameters on the final product.  
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