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Abstract
Developing spatially explicit permafrost datasets and climate assessments at scales relevant to
northern communities is increasingly important as land users and decision makers incorporate
changing permafrost conditions in community and adaptation planning. This need is particularly
strong within the discontinuous permafrost zone of the Northwest Territories (NWT) Canada
where permafrost peatlands are undergoing rapid thaw due to a warming climate. Current data
products for predicting landscapes at risk of thaw are generally built at circumpolar scales and do
not lend themselves well to fine-scale regional interpretations. Here, we present a new permafrost
vulnerability dataset that assesses the degree of permafrost thaw within peatlands across a 750 km
latitudinal gradient in the NWT. This updated dataset provides spatially explicit estimates of where
peatland thermokarst potential exists, thus making it much more suitable for local, regional or
community usage. Within southern peatland complexes, we show that permafrost thaw affects up
to 70% of the peatland area and that thaw is strongly mediated by both latitude and elevation, with
widespread thaw occuring particularly at low elevations. At the northern end of our latitudinal
gradient, peatland permafrost remains climate-protected with relatively little thaw. Collectively
these results demonstrate the importance of scale in permafrost analyses and mapping if research is
to support northern communities and decision makers in a changing climate. This study offers a
more scale-appropriate approach to support community adaptative planning under scenarios of
continued warming and widespread permafrost thaw.

1. Background

Climate change at high latitudes is causing rapid and
unprecedented environmental change (ACIA 2005;
Chapin 2005) as the rate of warming across the Arc-
tic has been three or four times that of the global
average in recent decades (Bekryaev et al 2010, Jef-
fries et al 2013, IPCC 2018). The future impacts of
climate warming on communities and infrastructure
is one of the most pressing issues facing the world
today (IPCC 2018). A unique challenge that north-
ern communities face in a warming climate is the
widespread thawing of permafrost. It is predicted that
by the mid-21st century, the area of permafrost in

the northern hemisphere will decline by 20%–35%
(IPCC 2018). Given this, northern communities are
increasingly asking for decision support tools that will
aid in adaptation planning by assessing where and
when permafrost thaw is going to occur (Melvin et al
2017).

Across the discontinuous permafrost zone of
the Northwest Territories (NWT), thermokarst is a
common permafrost-related disturbance in north-
ern peatlands. Permafrost peatlands typically occur
as complexes of areas with intact surface permafrost
(often referred to as peat plateaus or palsas) inter-
spersed with thermokarst bogs. Thermokarst refers
to the subsidence and land cover change that results

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/abe74b
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/abe74b&domain=pdf&date_stamp=2021-5-11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5227-5303
https://orcid.org/0000-0003-0155-8666
mailto:cgibson3@ualberta.ca


Environ. Res. Lett. 16 (2021) 055022 C Gibson et al

from thawing of permafrost in some areas, particu-
larly regionswith high ground ice content (Kokelj and
Jorgenson 2013). In the NWT, thermokarst causes the
conversion of permafrost peat plateaus to permafrost-
free thermokarst bogs and shallow open water wet-
lands (Zoltai and Tarnocai 1974). Historically, per-
mafrost peatlands in this region underwent a cycle of
degrading permafrost followed by permafrost recov-
ery and aggradation over an approximate 500 year
period (Zoltai 1993). During the degradation or ther-
mokarst phase, the land subsides which increases sat-
uration causing black spruce (P. mariana) die off
and replacement by highly productive Sphagnum spp.
mosses. Over time, surface peat accumulation would
lead to drier surface soils and greater woody plant
establishment, allowing permafrost to begin to form
again (Zoltai 1993). However, in a warming cli-
mate (IPCC 2018) with higher-intensity disturbance
regimes (Kasischke and Turetsky 2006, Wang et al
2015) rates of thermokarst formation are accelerating.
In the NWT, rates of thermokarst formation in peat-
lands increased three-fold after disturbance like wild-
fire (Chasmer et al 2010, Baltzer et al 2014, Gibson
et al 2018). In many peatland-rich regions, ongoing
climate change has surpassed the threshold required
for permafrost recovery, meaning that permafrost
thaw is irreversible (Camill 2005, Jorgenson et al 2006,
Baltzer et al 2014, Gibson et al 2018).

Broadly, thermokarst formation can cause a cas-
cade of direct and indirect effects, and these interact
with local hydrology (e.g. Quinton and Marsh 1999,
Smith et al 2007, Wright et al 2009, Tank et al 2016,
McGuire et al 2018) to drastically affect community
infrastructure (Addison et al 2016,Melvin et al 2017),
traditional land use (Andrews et al 2016), soil mer-
cury concentrations (Gordon et al 2016), and food
security (Calmels et al 2015). Given these widespread
and diverse impacts on ecosystem processes and ser-
vices, communities and land-users will increasingly
need to consider changes in permafrost within their
adaptation and planning efforts (Flynn et al 2019). To
do this effectively, there has been an increased desire
and demand for permafrost modeling and vulnerab-
ility data to help inform community planning and
land use planning in a warming, uncertain future. To
support the development of these products (model-
ling and vulnerability data), geospatial analyses that
describes the nature and intensity of permafrost thaw
and its spatial distribution are required.

Presently, the best available data products for pre-
dicting vulnerable permafrost are either developed
at circumpolar scales using modeled products (e.g.
Olefeldt et al 2016), or are small in geographic
scope, for example using fine-scale measurements
for infrastructure citing projects (e.g. Flynn et al
2019). Some recent studies at regional scales focus
on ice wedge degradation or thermokarst formation
in uplands (Rudy et al 2017, Steedman et al 2017,
Fraser et al 2018). For peatland-rich regions; however,

the Olefeldt et al (2016) circumpolar thermokarst
maps currently offer the best description of vulnerab-
ility to thermokarst formation. As noted above, ther-
mokarst in peatlands affects terrain stability and land
use but also is relevant to conservation, wildlife, and
fire management policies and planning. All of these
issues require new geospatial efforts at regional to
local scales.

Because permafrost is a product of climate,
ground temperatures are warming in response to
rising air temperatures (Biskaborn et al 2019). As
such, mean annual air temperature is one of the
most important and commonly used predictors of
thaw rates (Schaefer et al 2014, Lawrence et al
2015, McGuire et al 2018). However, some of the
most rapid thermokarst rates are occurring in cold-
climates (Lewkowicz and Way 2019), a strong illus-
tration that other factors affect the rate and extent
of thermokarst formation. In the Taiga Plains region
of the NWT, mean annual air temperature ranges
from−1.3 ◦C to−8.4 ◦C. Thus, communities in this
region experience very different air and ground tem-
peratures as well as other factors such as topography
and elevation (figure 1(a)) (Fick and Hijmans 2017),
all of which interact to govern thaw vulnerability.
The goal of this study was to work across a latitud-
inal gradient in the Taiga Plains region, designed to
encompass some of this climatic and permafrost vari-
ability. Our geospatial analyses differentiated areas
where permafrost has already thawed versus perma-
frost peatland areas that remain susceptible to ther-
mokarst formation in the future. Our goals were to
(a) update permafrost peatland vulnerability maps at
local scales along this latitudinal gradient and com-
pare them to the results of existing circumpolar-scale
thaw products, (b) assess how the degree of ther-
mokarst formation within permafrost peatlands var-
ies with latitude and mean annual temperature and
(c) determine the role of other topographical con-
trols (such as elevation) on thermokarst formation
and its importance for identifying vulnerable perma-
frost at community scales using the latitudinal gradi-
ent as a space-for-time substitution to make infer-
ences about how thaw may progress in a warming
climate. Understanding both current and future pat-
terns of thermokarst formation in peatlands, as well
as major climatic or geophysical drivers of thaw, will
be important in our goal of supporting the com-
munities whose livelihoods depend on permafrost
environments.

2. Study area

This study covers an area of 372 220 km2 in the
south-central portion of the NWT and covers the dis-
continuous permafrost zone of the Taiga Plains Eco-
zone (figure 1(a)). Mean annual air temperature var-
ies from−1.3 ◦C to−8.4 ◦C.
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Figure 1. (a) Map of study region (372 220 km2), representing the extent of the discontinuous permafrost zone within the Taiga
Plains Ecozone with the NWT, Canada. Variation in elevation across the study region is shown (CDEM—Natural Resources
Canada, 2015). The local environments that community members interact with across the study region reside in different
elevation positions, and community land users interact with these varying conditions as they travel across and use the landscape.
Base maps provided by Esri, DigialGlobe, Geo Eye (ArcGIS version 10.3). The bottom left inset shows the location of the study
area relative to northern Canada. (b) Example permafrost peatland complex (61◦14’6.79” N, 117◦35’23.81” W). Peat plateaus
represent areas underlain by permafrost, while thermokarst areas are those in which conversion from peat plateau to thermokarst
bog has occurred. Peatland complex area= peat plateau area+ thermokarst area. GeoEye satellite image obtained online
https://zoom.earth.

This area is characterized by a subdued relief and
gently rolling plains. It is underlain with horizontal
beds of sedimentary rocks consisting of limestone,
shale, sandstone, and conglomerates. The imprint of
glacial legacy dominates the contemporary landscape.
Surficial deposits range from hummocky till, to gla-
cially fluted terrain that has yielded vast aligned/ori-
ented wetland and lake systems, to large lacustrine
plains deposited by former glacial lakes, the largest
being Glacial LakeMcConnell. Post glacial incision of
theMackenzie River and its tributaries have improved
drainage through the region and yielded fluvial
deposits along the river valleys. However, vast low-
lying areas across the region have remained poorly
drained, favouring accumulation of organic materi-
als and peatland development. As a result, this area is
one of the major peatland areas of Canada and nearly
40% of the study area is peatlands (Ecosystem Classi-
ficationGroup (2007 rev. 2009). Peat accumulation in
this area initiated following deglaciation∼9000 years
ago (Loisel et al 2014) and is strongly related to
climate as well as to local moisture and drainage
conditions, with peat thickness varying between 2
and 6 m. Permafrost aggradation began during the
climate cooling after the Holocene thermal max-
imum∼5000 years ago, and becamemorewidespread
following further cooling 1200 years ago (Pelletier
et al 2017).

Permafrost peatlands in this area are a mosaic
of permafrost peat plateaus raised 1–2 m above sur-
rounding permafrost-free bogs and fens. For clarity,
the following definitions are used to guide the map-
ping and analysis as part of this study (figure 1(b)):

• Peat plateau area: the area where permafrost
remains and elevates the surface 1–3 m above the
surrounding landscape due to high ground ice con-
tent. Characterized by a relatively dry surface that
supports black spruce (Picea mariana), evergreen
shrubs such as Labrador tea (Rhododendron groen-
landicum), and lichen andmoss cover (Cladina spp.
and Sphagnum spp, respectively).

• Thermokarst area: the permafrost-free bogs that
have formed following permafrost thaw. These
bogs are characterized by highly saturated soils
and vegetation dominated by Sphagnum spp. and
sedges.

• Peatland complex area: the entire peatland that
encompasses both peat plateaus and thermokarst
bog area.

2.1. Updating permafrost peatland vulnerability
maps at local scales
To update permafrost peatland vulnerability maps
at local scales within the discontinuous permafrost
zone of the NWT, the 372 220 km2 study area was
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Figure 2. Process of estimating the extent of thermokarst formation within selected 3.75× 3.75 km grid cell. (a) Random
selection of ‘high’ or ‘very high’ classified grid cells across the study area. (b) Selection ten random sub-grid cells 375× 375 m in
size. (c) Visual percent estimates of thermokarst bog within the sub grid cell.

mapped using Sentinel 2 imagery (Sentinel-2A, B04
(Red), B03 (Green), B02 (Blue), 10m, 2016 and 2017,
July and August). Peatland complex area was visually
mapped using a 3.75 × 3.75 km grid cells using the
percent cover of permafrost peatland complex area
per grid cell. The grid cell classes include none (0%
coverage), negligible (<2%), low (3%–25%), mod-
erate (26%–50%), high (51%–75%), and very high
(76%–100%). A subset of study area (∼5% of the
mapped area)was assessed by twomappers in order to
test the guidelines on interpretation and the accuracy
of the approach. With respect to percent area estim-
ates, overall mapper accuracy is 89%. The data was
compiled and all GIS analysis was completed using
ArcGIS (ESRI, 2014, version 10.2.2, Redlands, CA,
USA). For complete methods and data see Gibson
et al (2020). Given the cyclical lifecycle, and high-
ice content properties of peatland permafrost (Zoltai
1993), we consider any intact permafrost peatland to
be predisposed to thermokarst formation.

2.2. Assessment of the degree of thermokarst
formation across a latitudinal gradient
To assess how the degree of thermokarst forma-
tion within permafrost peatland varies across the cli-
matic gradient, we visually quantified the proportion
of peatland complex area that had undergone ther-
mokarst formation using the ESRI World Imagery
map downloaded from ArcGIS.com (World Imagery
(arcgis.com)). Mosaiced satellite imagery used in this
interpretation were acquired during the growing sea-
son (May to September) from 2009 to 2019. All data
were provided to theWorld Imagery archive byMaxar
Inc. Data were acquired at varying pixel resolutions
between 0.31 and 0.6 m collected using GeoEye-1,
WorldView2, WorldView3 and Quickbird-2. Visual
estimations are possible due to the distinct vegeta-
tion differences between thermokarst bogs and intact
permafrost peat plateaus that are clearly discernable

on RGB (optical) high resolution satellite imagery
(figure 1(b)).

To determine how the proportion of peatland
complex that has thawed varied across the study
region, 3.75 × 3.75 km grid cells with high and
very high estimates of permafrost peatlands were first
identified. This ensured that we were comparing sim-
ilar peatlands areas across a latitudinal gradient and
that differences in the amount of thaw are not being
driven by other factors that are occurring at fine scales
in small peatlands. Furthermore, from a community
perspective, it is likely that thawing of large perma-
frost peatlandswill have themost impact on their land
use regarding travel and changes in hydrology (Quin-
ton et al 2011a).

A subset of these identified cells where then ran-
domly selected (n = 70, or ∼5%, figure 2). Selec-
ted grid cells spanned the entirety of the study area
and had high resolution ArcGIS DigitalGlobe, Geo
Eye basemap (ArcGIS version 10.3) imagery avail-
able. Selected grid cells where then overlain with a
10 × 10 grid (creating 100 sub-grid cells with size
equal to 375 × 375 m). Of the 100 sub grid cells,
those contained within the peatland complex area
were identified visually and ten random cells of those
were selected to determine the degree of thermokarst
formation (figure 2). In the selected sub grid cells,
we visually estimated the percent of the peatland
complex with thermokarst formation. Estimates were
made in intervals of 10 (i.e. 0%, 10%, 20%, 30% cov-
erage etc). The mean percent of peatland complex
area that was thawed and standard deviation for each
3.75× 3.75 km grid cell was calculated.

To assess how the proportion of peatland com-
plex that has thawed varied across a climatic gradi-
ent, mean annual air temperature was estimated from
WorldClim 2.1 climate model (Fick and Hijmans
2017). This dataset is a grid (resolution = 1 km2)
of average monthly temperature interpolated from
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weather station data (1970–2000). Long time series of
historical observations of climate and hydrology are
scarce in the NWT, therefore gridded datasets have
been used as alternatives to instrumental observa-
tions for climate analysis (Persaud et al 2020, Segal
et al 2016). The mean annual air temperature from
the WorldClim 2.1 climate model was assigned to
each grid cell using the zonal statistics tool in ArcGIS.
Given the high collinearity between mean annual air
temperature and latitude (R2 = 0.95) and the greater
certainty in latitude compared to mean annual air
temperature, latitude was used in all subsequent ana-
lyses.

The proportion of thawed peatland complex area
was linearly regressed against latitude. The scatter-
plot was visually assessed for trends in thermokarst
formation to make inferences about how thaw may
progress in a warming climate. This data was also
binned into three groups (59.9–62◦ N, 62–64.1◦ N,
and 64.1–66.1◦ N) and statistically tested for differ-
ences in the proportion of peatland complex thawed
using an ANOVA. The binned data was also statistic-
ally tested for differences in variance using a Fligner–
Killeen test of homogeneity of variances for non-
normally distributed data (Williams et al 1981).

2.3. Elevational controls on thermokarst formation
To assess the potential for elevational controls on
thermokarst formation, elevation data was derived
from the 0.75 arcsec (20 m) Canadian Digital Elev-
ation Model (CDEM—Natural Resources Canada
2015). Individual CDEM tiles were mosaiced to the
extent of the study area and mean elevation was
assigned to each grid cell using the zonal statistic tool
in ArcGIS. Visual assessments and interpretations
weremade to determine how elevation influenced the
proportion of thermokarst formation within an indi-
vidual bin and between bins. This was assessed using
regression analysis with a model of the proportion
of thermokarst with the main effects of latitude and
elevation.

3. Results

3.1. Proportion of peatland complex that has
thawed across a latitudinal gradient
The mapping of a 372 220 km2 area of northwestern
Canada confirmed widespread coverage of perma-
frost peatlands. In total, 53% of the grid cells con-
tained permafrost peatlands (figure 3) with 16% clas-
sified as negligible, 21% low, 9% medium, 5% high,
and 2% very high cover. The proportion of peatland
complex already containing thaw ranged from3± 3%
to 77± 12%within the study area. The proportion of
peatland complex thawed also varied along a latitud-
inal gradient with greater proportions of thermokarst
formation in peatland complexes in the south com-
pared to the north (figure 4(a)). The proportion

of peatland complex thawed varied between latit-
udinal bins (figure 4(a) inset; ANOVA, p < 0.001,
F = 73.89). Additionally, there was greater variabil-
ity in the proportion of peatland complex thawed in
southern permafrost peatlands compared to north-
ern ones (Fligner–Killeen test of homogeneity of vari-
ances, p < 0.001, figure 4(a) inset). This was also
apparent from increased scatter around the regression
line.

3.2. Elevational controls on thermokarst formation
Elevation appears to govern the proportion of ther-
mokarst formation within peatland complexes at
lower latitudes (figure 4(b)). Our results suggest that
latitude and elevation together improved prediction
of thermokarst formation compared to latitude or
mean annual air temperature alone (p < 0.001). Fur-
thermore, the proportion of thermokarst formation
was significantly correlated to elevation for the lower
(linear model, p = 0.004) and mid latitude (linear
model, p = 0.006) bins, but not for the high latit-
ude bin (linear model, p = 0.8). We infer that the
increased variance in the proportion of thermokarst
formation at lower latitudes is being driven by this
elevation effect, whereby higher elevation peatlands
remain protected from increasing temperatures.

4. Discussion

4.1. New permafrost peatland thaw vulnerability
map
One of the driving forces for this study was to cre-
ate permafrost thaw vulnerability maps at a scale
appropriate for community-use, as coarse circum-
polar scale assessments can lead to feelings of eco-
anxiety (Cunsolo and Ellis 2018). If thaw probabil-
ity maps are coarse in scale and large areas of com-
munity territories are indicated to be ‘at high risk’ of
abrupt thaw, it may contribute to feelings of hopeless-
ness in the face of climate change (Cunsolo and Ellis
2018). The spatially explicit nature of our permafrost
thaw dataset provides a more manageable perspect-
ive of risk and allow more effective identification of
‘hot spots’, and conversely also ‘cold spot’ areas that
are deemed less vulnerable to landscape change in
the face of warming and permafrost thaw. Addition-
ally, the permafrost peatland and thermokarst dataset
described here helps to address the subjective concept
of permafrost risk (Aven and Renn 2010) in which
community members are likely to carry their own
risk narratives (including past experiences with per-
mafrost thaw) and apply it to any mapping product
(Flynn et al 2019).

Previous research used circumpolar data to
quantify how much lowland organic-rich permafrost
(mainly peatlands) is predisposed to thermokarst,
including peatlands that may have already experi-
enced thermokarst (Olefeldt et al 2016). Because of
its coarse scale, Olefeldt et al (2016) caution against
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Figure 3.Map showing the density distribution of permafrost peatlands in the discontinuous permafrost zone of the Taiga Plains.
Data are shown according to grid cell size 3.75× 3.75 km. Figure originally published by NWT Geological Survey; figure 9(a),
Reproduced with permission from Gibson et al (2020). Figure originally published by Northwest Territories Geological Survey;
figure 9a, Gibson et al 2020.

Figure 4. (a) Relationship between latitude and the proportion of peatland complexes that have thawed due to thermokarst
formation. Colour represents mean annual air temperature (Fick and Hijmans 2017). Inset figure shows the proportion of
peatland complex’s thawed in three latitudinal bins that are significantly different from each other in their proportion thaw.
(b) Proportion of peatland complex thawed binned by latitudinal classes; data also are visualized by elevation. Larger light green
dots represent higher elevations while smaller dark green dots represent lower elevations.

regional or local applications of the product. Rather
than relying on proxies known to be important in
triggering thermokarst, such as topography or ground
ice information (Olefeldt et al 2016), here we directly

quantified the area of peatland complexes and, in
a subset of grid cells, the proportion of thermokarst.
Because peatlands form in particular topographic and
ground ice settings, our mapping product has strong
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Figure 5. Comparison of geospatial products of lowland thermokarst potential in permafrost peatlands in the discontinuous
permafrost zone of the Taiga Plains Ecozone within the NWT, Canada. (a) The Olefeldt et al (2016) framework uses circumpolar
scale predictors to explore whether an area is highly (or less likely) predisposed to thermokarst. Here we show only the patterns of
thermokarst predisposition related to lowland organic permafrost, primarily permafrost peatlands. (b) Our gridded approach was
developed for use at regional or community-relevant scales. We assume that all permafrost peatlands are vulnerable to future
thermokarst and use the proportion of permafrost peatland complex within the grid cell as an estimate of whether it is highly or
less highly predisposed to peatland thermokarst. Figure originally published by NWT Geological Survey; figure 9(a), reproduced
with permission from Gibson et al (2020). Figure originally published by Northwest Territories Geological Survey; figure 9a,
Gibson et al 2020. For larger versions of the maps see Gibson et al 2020.

correlations with the input data used in Olefeldt
et al (2016) coarser product, despite the differences
between the two studies. The Olefeldt et al (2016)
classifies ‘High’ vulnerability as 30%–60% cover-
age (equivalent to this study’s ‘moderate’ category)
and assumes 50% of their ‘very high’ coverage to be
permafrost-free given it is located in the discontinu-
ous permafrost zone. Though these two mapping
products have different approaches and vary in how
the thermokarst predisposition classes were binned
and classified, we were interested in comparing the
two products in terms of how the area of land deemed
most vulnerable to thermokarst varied (i.e. the dif-
ference in area of ‘high’ and ‘very high’ categories
between the two products).

Using the circumpolar mapping approach out-
lined in Olefeldt et al (2016) applied to our study
region, the proportion of total land associated with
‘high’ or ‘very high’ predisposition to lowland/peat-
land thermokarst was 61%. Our results indicate
that only 6% of this same region has ‘high’ or
‘very high’ predisposition to peatland thermokarst
based on our mapping of permafrost peatland com-
plexes (figure 5). This reduction in the area classi-
fied as being highly predisposed to peatland ther-
mokarst possibly is attributed to the coarse scale
of input data utilized by Olefeldt et al (2016). The

scale of circumpolar data could be leading to an
overestimation of peatland area or an overestima-
tion of the potential for peatland thermokarst. Here
we assume that all permafrost peatlands are vulner-
able to thermokarst. The large differences between
our results and the Olefeldt et al (2016) approach is
likely due more to differences in classifying lowland
organic-dominated terrain (Olefeldt et al approach)
versus actual peatland area (our approach). We con-
clude that the Olefeldt et al (2016) approach is suit-
able for general applications that need non-spatially
explicit information on thermokarst potential, while
this study’s approach is appropriate for regional or
fine-scale applications that require a spatially explicit
understanding of where thermokarst potential areas
truly are.

For purposes of community use and planning,
the mapping products described in this study provide
spatially explicit empirically-based estimates of per-
mafrost peatland area and thus a more direct assess-
ment of thermokarst potential. Given that proact-
ive planning of infrastructure and land use based
on the potential for permafrost thaw is typic-
ally more cost-effective than retrofitting (Melvin
et al 2017), appropriately-scaled thaw vulnerability
maps are critical for supporting landscape planning,
cumulative effects assessments within environmental
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assessments, and for environmental management
through range planning. Our assumption that all per-
mafrost peatland area is predisposed to future ther-
mokarst is reasonable for permafrost thaw in boreal
and subarctic peatlands but may not be appropri-
ate for other types of thermokarst occurring in Arc-
tic tundra. This means that other approaches may be
required for creating community-relevant thaw vul-
nerability maps in regions where hillslope or lake
thermokarst is likely to be a dominant type of land-
scape change.

We note that there are challenges in using the
information from this study portrayed in figure 3 to
identify future ‘hazard potential’ from thawing per-
mafrost. A key limitation of this current dataset is that
it assesses permafrost peatland complex area and does
not identify the amount of thermokarst, or ‘thaw to
date’ within the complex. ‘High’ classified grid cells in
the north versus south can contain similar amounts
of permafrost peatlands; however, peatlands located
further south in our region have already experienced a
significant amount of thaw (figure 4). Understanding
future ‘thaw hazard’ will require a consideration of
the period in which ‘hazard’ is being assessed. South-
ern peatlands, though they have less permafrost left to
thaw (figure 4), are going to lose the remaining per-
mafrost in much shorter timeframes than northern
peatlands. Therefore, hazard assessmentswith shorter
time frames (years to decades) would suggest higher
hazard in the south, where thawing is expected to
be most pronounced over this short time period. On
the other hand, northern peatlands have significantly
larger areas of intact permafrost remaining to thaw
(figure 4), suggesting that the total magnitude of the
hazard will be greater over the long term. Thus, for
hazard assessments with a longer time frame (dec-
ades to next century), the potential for future thaw
or thaw-hazards may be more pronounced in north-
ern peatlands. For a more detailed description of the
dataset’s limitations see Gibson et al (2020).

The grid-based mapping approach used in
this study allowed for improved spatial resolution
and continuous coverage while balancing the time
required to analyse and interpret the satellite imagery.
Rather than ‘mapping’ with points, lines and poly-
gons, grid-based mapping allowed us to effectively
record the locations of permafrost peatlands and
identify high density area of peatlands. Grid-based
mapping provides an efficient solution to the prob-
lems of mapping small landforms over large areas, by
providing a consistent and standardized approach to
spatial data collection (e.g. Segal et al 2016). The sim-
plicity of the grid-based mapping approach makes
it extremely scalable and workable for group efforts,
requiring minimal user experience and producing
consistent and repeatable results (Ramsdale et al
2017). Although the grid-based assessment cannot
identify the specific locations that thaw has or is

likely to occur within the permafrost peatlands (i.e.
does not identify specific thermokarst locations),
what it does provide is a higher order assessment
of where vulnerable areas are located. These vulner-
able areas can then be assessed against important and
traditional areas of communities to help direct and
inform where finer scale studies and efforts should
be applied (Andrews et al 2016). This approach is
feasible because thermokarst in peatlands leads to
surface changes that are easily detected. In other
situations (such as active layer thickening), perma-
frost thaw may not be easily detected from surficial
changes.

4.2. Thawed permafrost peatland areas with
variation in latitude and elevational controls
The latitudinal effect on the proportion of thaw in
permafrost peatland complexes illustrates the poten-
tial for continued widespread thawing across the dis-
continuous permafrost zone of the NWT. A near 70%
difference in the proportion of thermokarst area in
our study region occurs across a ∼3◦C–4◦C differ-
ence in air surface temperatures (Fick and Hijmans
2017). In response to these air temperatures, mean
annual ground temperatures range from >0 ◦C in the
southern portion to−2◦C in the northern portion of
our study region (Smith et al 2010). Mean annual air
temperatures in our study area are expected to rise by
3◦C by 2100 (IPCC 2018). Altogether, this suggests
that the ground temperatures and thaw-extent in the
northern extent of the study area in the future will
be similar to those currently observed in the south-
ern extent of the study area today. Jorgenson et al
(2020) concluded that permafrost thaw in interior
Alaska, with mean air temperatures of −2.4 ◦C, has
already reached a tipping point with irreversible thaw.
If this is true in the NWT, we speculate that by
2100 as much as 70% of northern permafrost peat-
lands will have thawed permanently within the study
area.

We were surprised by the linear relationship
between latitude and proportion of thermokarst. We
had predicted there would be nonlinear evidence of
abrupt ecological change, defined as a substantial
change in ecosystem states over relatively short peri-
ods of time when compared to typical rates of change
(Ratajczak et al 2018). Abrupt ecological changes are
increasing being reported in nature due a warm-
ing climate and spans diverse ecosystems and scales
(Bestelmeyer et al 2011, Cloern et al 2015, Rocha
et al 2015, Thomson et al 2015, Westerling 2016). In
this study, it was expected there would be a nonlin-
ear response in the proportion of thermokarst area
across the latitudinal gradient as Baltzer et al (2014)
showed an exponential increase in the rate of thaw
(i.e. percent plateau loss per year) with climate warm-
ing using a time series analysis. Although this study
shows no evidence of nonlinearity in the proportion
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of thermokarst area within permafrost peatlands, it
could be occurring within discrete ecological areas
as opposed to the larger ecological gradient we used
in our space-for-time substitution. If so, additional
work is needed using time series analysis to test for
non-linearities within permafrost peatlands.

Our latitudinal gradient and opportunity to think
about a space-for-time substitution allowed us to
speculate about how northern climate-protected per-
mafrost peatlands may be impacted by future warm-
ing. We do, however, acknowledge that our approach
assumes that northern permafrost peatlands will
respond to climatewarming in the sameway southern
permafrost peatlands have. This will be complicated
by complex interconnected controls on thermokarst
formation including but not limited to permafrost
thickness, subsurface condition, drainage and more
(e.g. Quinton et al 2011b, Quinton and Baltzer 2013,
Baltzer et al 2014). However, despite these cautions
and caveats, space-for-time approaches are com-
monly used as one approach for providing insights
into potential ecosystem changes associated with cli-
mate change (Dieleman et al 2020, Pokrovsky et al
2020).

One of the key challenges for predicting how and
when permafrost peatlands will respond to warming
is that projections often depend on accurate mean
annual air temperature data. The NWT is data sparse.
Mean annual air temperature data for the study
region is only based on two weather reporting sta-
tions (Environment Canada 2016). While the result-
ing interpolation may be sufficient for large scale cli-
mate and permafrost modeling, predicting finer scale
patterns and processes is difficult. If we are to sup-
port community adaptation and planning to chan-
ging permafrost conditions, we will require a better
understanding of regional differences inmean annual
air temperature (i.e. more long-term climate monit-
oring).

This study also demonstrates the importance of
considering fine-scale regional differences in eleva-
tion when assessing trends in thermokarst formation.
Our results show substantial variance in thaw-extent
at lower latitudes. We attribute this to differences
in elevation, in which higher elevation peatlands are
more protected from increasing temperatures than
lower elevational peatlands and are generally far bet-
ter drained (figure 5). We assumed that permafrost in
northern peatlands would be more climate protected
than southern peatlands in our study region, but these
results suggest that peatland permafrost also can be
resistant to change due to high elevation. This find-
ing, coupled with the known mean annual air tem-
perature sparsity within the study area, introduces the
need more fine-scale data. We recommend that fine-
scale data collection of mean annual air temperatures
and mean annual ground temperatures is prioritized
in order tomakemore valid predictions of future per-
mafrost thaw in and around communities.

5. Conclusion

As northern regions experience widespread perma-
frost thaw, northern communities need access to
spatially relevant decision support tools. While sev-
eral studies have quantified patterns of thermokarst
sensitive terrain across a variety of scales for north-
western Canada (e.g. Aylsworth et al 2000, Alysworth
and Kettles 2000, Kokelj et al 2017, Lewkowicz and
Way 2019), there are few available data products for
predicting the vulnerability of permafrost peatlands
to thaw that bridge circumpolar (e.g. Olefeldt et al
2016) and very fine spatial scales (e.g. Flynn et al
2019). In this study we present an updated, spatially
relevant dataset for predicting permafrost peatland
area and thaw extent in the discontinuous permafrost
zone of theNWT. This updated data product provides
a more spatially explicit understanding of vulnerable
permafrost peatlands and decreases the predicted area
of ‘high or highly vulnerable’ permafrost peatlands
by nearly 90%. Furthermore, we found a strong lat-
itudinal effect on the proportion of thaw within per-
mafrost peatland complexes, with near total loss of
permafrost in the southern extent. Using this rela-
tionship in a space-for-time substitution along with
climate projections for our study region, we suggest
that most permafrost in peatlands across our entire
latitudinal gradient across the discontinuous perma-
frost zone in the NWT will be permanently thawed
by 2100. However, we show that thaw will be medi-
ated by elevational differences, and that permafrost in
higher elevational peatlands will be more resistant to
thaw than peatlands in low elevation environments.
Because northern community members interact with
diverse landscapes as they access the land for hunt-
ing, gathering, and cultural activities, these differ-
ences governing the trajectory of thawwill be import-
ant to consider in regional ecosystem and infrastruc-
ture planning.
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